

Question Paper

B.Sc. Honours Examinations 2021

(Under CBCS Pattern)

Semester - III

Subject : PHYSICS

Paper : C 7 - T & P

Full Marks : 60 (Theory - 40 + Practical - 20)

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[DIGITAL SYSTEMS AND APPLICATIONS]

(Theory : Marks - 40)

Group - A

	Answer any <i>three</i> of the following questions :		
1.	(a)	What is Universal gate? Design Ex-OR gate using NOR gate only.	1+2
	(b)	Draw a circuit diagram of an AND gate using DTL. Explain its operation.	2+2
	(c)	Explain how an OR gate can be converted to AND gate.	3
	(d)	Perform the binary subtraction using 2's complement form. (1110011–1001	1) 2

2.	(a)	Convert Hexagonal Number (2F9A) ₁₆ to equivalent Binary Number.	2
	(b)	Write down the sop expression of the Boolean expression	
		$f(A, B, C, D) = \sum_{m} (1, 3, 4, 6, 8, 9, 11, 13, 15) + \sum_{d} (0, 2, 14)$	2
	(c)	Find the decimal equivalant of 111.1011	2
	(d)	Find the output of K – Map \rightarrow	2
		AB ₀₀ 01 11 10 C 0 1 1 1 1 1 1	
	(e)	Design a 1 : 2 DeMuX using NAND GATES.	2
	(f)	Prove the identity $\overline{AB} + \overline{A} + AB = 1$	2
	(g)	What are the volatile and non-volatile Memories in a micro-processor?	2
3.	(a)	(i) What is Multiplexer? Design 4 to 1 Multiplexer using Basic gates?	
		(ii) Realize : $Y = \overline{A} B + \overline{B} \overline{C} + A \overline{B} C$, using 4 to 1 Multiplexer. 1+2+	-3
	(b)	What is full adder? How can it be implemented by logic gates? Draw the logic bloc diagram for adding two decimal numbers 7 and 12.	:k -3
4.	(a)	What is digital comparator? Draw a single bit comparator using basic gates. 1+	-3
	(b)	Define register. Construct a 4 bit register using J-K flip-flops. Write down the tab for readings of shift register after each clock pulse by assuming the data 1011. 1+3+	le -3
	(c)	Represent (2 ¹¹ –1) into hexadecimal number system.	1
5.	(a)	What is synchronous counter? What is its advantage over asynchronous counter. Draw the block diagram of a 3-bit synchronous counter. Explain its operation with its operation with the necessary diagram. $1+2+3+$	r? >n -3
	(b)	Draw the circuit diagram of a 4-bit SISO register using D-type flipflops.	3

- 6. (a) Draw a Master-Slave JK flip-flop system using universal gates. Explain its operation. What are the functions of preset and clear inputs? What is meant by race around condition? How can it be avoided? 2+3+3+1+1
 - (b) What do you mean by edge triggering in flip-flop?

Group - B

Answer any two of the following questions :

- 7. An equality detector gives an output 1 if A and B are both 1 or if A and B are both zero. Implement the circuit.
- 8. In a D/A converter the full-scale output voltage is 5V. Find its resolution.
- 9. How many address lines are required to address two megabytes (2048K) of memory?
- 10. A negative logic OR is equivalent to positive logic AND. Explain.

(Practical : Marks - 20)

Group - A

Answer any *one* of the following questions :

1. Design an astable multivibrator of frequency of 10 KH_Z with 2/3 rd duty cycle using 555 timer IC.

- (a) Theory
- (b) Implementation of the circuit and recording of data.
- (c) Results and discussion.
- 2. Design a 4-bit shift register PISO using D type JK F-F ICS.
 - (a) Theory
 - (b) Implementation of the circuit and recording of data.
 - (c) Results and discussions.

 $2 \times 2 = 4$

20×1=20

8+8+4

8+8+4

3.	Desi	Design a R-S flip-flop using NAND gates.					
	(a)	Theory					
	(b)	Implementation of the circuit and recording of data.					
	(c)	Results and discussion.	3+8+4				
4.	4. Design a 4-bit binary adder and check the result for the set of data.						
	(a)	Theory					
	(b)	Implementation of the circuit and recording of data.					
	(c)	Result and discussion. 74	+10+3				
5.	5. Design AND, OR, EX-OR gates using IC–7400 and verify their truth tables.						
	(a)	Theory					
	(b)	Implementation of the circuits and taking data.					
	(c)	Result and discussion. 7-	+10+3				
		by a sab					